Pre-class Warm-up!!!
Let $f: R \wedge 3->R$ be a function.
Select the best answer to complete the sentence.
The gradient of f is
a. a function $R \wedge 3->R$
b. a function $R \rightarrow R^{\wedge} 3$
c, a function $R \wedge 3->R \wedge 3$
d, not defined.
e, none of the above.

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

Second question:
What color way Wednesdays
Pre-class Wborn-up!!!?

4.3 Vector fields

We learn:

- What is a vector field
- Examples: flow of a fluid force fields
gradient vector fields
- Flow lines

Things we don't do (right now):

- Escape velocity
- Newton's gravitational law
- Coulomb's law
- Show that a vector field is not a gradient vector field (example 7)

Types of question:

- sketch and recognize vector fields
- Verify that a given path is a flow line for some vector field
- Find a function with a specified vector field as gradient (qn 21, but not done in the text of the book)

Definition: a vector field on \mathbb{R}^{n} is a function $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.

Sketch the vector field $F(x, y)=(y, x+y)$

Definition: a flow line for a vector field F is a path $c: \mathbb{R} \rightarrow \mathbb{R}^{n}$ so that $c^{\prime}(t)=F(c(t))$

Wind velouties in $M N$ are described by a vector field.

Match the fields to the pictures

1. $F(x, y)=(y,-x) \quad d$
2. $F(x, y)=(-y, x) \quad$ c
3. $F(x, y)=(x, y) \quad b$
4. $F(x, y)=(y, x) \quad a$

In 1. when $y=0, F(x, 0)=(0,-x)$ which points down on the positive x-axis

Like questions 15-20:
Show that $c(t)=(t, t \wedge 2 / 2)$ is a flow line for the vector field $F(x, y)=(1, x)$.
Solution. We check $c^{\prime}(t)=F(c(t))$ always. $c^{\prime}(t)=(1, t) . \quad F(c(t))=(1, t)$
These are equal so c is a flow line.

Like question 21. Find a function f so that $F(x, y, z)=(y \wedge 2,2 x y, 1)$ is the gradient of f (or show that such f does not exist).

Solutiven, We want $f: \mathbb{R}^{3} \rightarrow R$
so $\frac{\partial f}{\partial x}=y^{2}, \frac{f^{f}}{\partial y}=2 x y, \frac{\partial f}{\partial z}=1$
Then equation 1 says $f=x y^{2}+a(y, z)$
Equation 2 says $f=x y^{2}+b(x, z)$
Equation 3 says $f=2+c(x, y)$
a, b, c are unknown functions
$f=x y^{2}+z$ is a required functions

4.4 Curl and divergence

We learn:

- The definitions of

$$
\operatorname{div} F \text { when } F: R \wedge n->R \wedge n
$$

$$
\text { curl } F \text { when } F: R^{\wedge} \wedge 3->R \wedge 3
$$

- Notation $\operatorname{div} F=\nabla \cdot F$, curl $F=\nabla \times F$
- Physical interpretations grad $f=\nabla f$
- $\operatorname{curl}(\operatorname{grad} f)=0$ and $\operatorname{div}(\operatorname{curl} F)=0$
- the Laplacian. $\nabla \cdot(\nabla f)=\nabla^{2} f$

What you don't need to memorize:

- the other formulas on page 255.

Types of questions:

- calculate div and curl.
- Which composites make sense?
- Verify e.g. curl $(\operatorname{grad} f)=0$
- Scalar curl.

Definition Let $F=\left(F_{-} 1, \ldots, F_{-} n\right)$. The divergence of F is

$$
\begin{aligned}
& \operatorname{div}=\nabla \cdot F=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}} \\
& \nabla \cdot F: \mathbb{R}^{n} \longrightarrow \mathbb{R}
\end{aligned}
$$

Examples: $F(x, y, z)=(x, y, 0) ; G(x, y, z)=(-y, x, 0)$

$$
\begin{array}{rlrl}
y_{\mid}, & \nabla \cdot F & =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial 0}{\partial z} \\
\lambda, & & & =1+1+0=2
\end{array}
$$

for $\operatorname{all}(x, y, z)$
$\nabla \cdot F$ measures the amount of stuff being produced by F I

$$
\nabla \cdot G=\frac{\partial(-y)}{\partial x}+\frac{\partial x}{\partial y}+\frac{\partial 0}{\partial z}=0
$$

$$
\begin{aligned}
& \text { Definition Let } F=\left(F_{-} 1, F_{-} 2, F_{-} 3\right) \text {. The curl } \\
& \text { of } F \text { is } \\
& \text { curl } F=\nabla \times F=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =\operatorname{det}\left[\begin{array}{ccc}
l & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & \frac{F_{3}}{F_{2}} & F_{3}
\end{array}\right] \\
& \nabla=\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial y}\left(\frac{\partial}{\partial z}\right)\right.
\end{aligned}
$$

Examples: $\mathrm{F}(x, y, z)=(x, y, 0) ; G(x, y, z)=(-y, x, 0)$

$$
\begin{aligned}
& =(0,0,0)
\end{aligned}
$$

curl measures counterclockwise rotation about a rector, and points in the durection of that vector

